Induction of Barley Silicon Transporter HvLsi1 and HvLsi2, increased silicon concentration in the shoot and regulated Starch and ABA Homeostasis under Osmotic stress and Concomitant Potassium Deficiency

نویسندگان

  • Seyed A. Hosseini
  • Anne Maillard
  • Mohammad R. Hajirezaei
  • Nusrat Ali
  • Adrian Schwarzenberg
  • Frank Jamois
  • Jean-Claude Yvin
چکیده

Drought is one of the major stress factors reducing cereal production worldwide. There is ample evidence that the mineral nutrient status of plants plays a critical role in increasing plant tolerance to different biotic and abiotic stresses. In this regard, the important role of various nutrients e.g., potassium (K) or silicon (Si) in the mitigation of different stress factors, such as drought, heat or frost has been well documented. Si application has been reported to ameliorate plant nutrient deficiency. Here, we used K and Si either solely or in combination to investigate whether an additive positive effect on barley growth can be achieved under osmotic stress and which mechanisms contribute to a better tolerance to osmotic stress. To achieve this goal, barley plants were subjected to polyethylene glycol (PEG)-induced osmotic stress under low or high K supply and two Si regimes. The results showed that barley silicon transporters HvLsi1 and HvLsi2 regulate the accumulation of Si in the shoot only when plant suffered from K deficiency. Si, in turn, increased the starch level under both osmotic stress and K deficiency and modulated the glycolytic and TCA pathways. Hormone profiling revealed that the beneficial effect of Si is most likely mediated also by ABA homeostasis and active cytokinin isopentenyl adenine (iP). We conclude that Si may effectively improve stress tolerance under K deficient condition in particular when additional stress like osmotic stress interferes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تأثیر کمبود آب قابل دسترس و غلظت سیلیسیم محلول غذایی بر برخی ویژگی‏های فیزیولوژیک، بیوشیمیایی و رشد گیاه گندم

In order to investigate the effect of silicon concentration in substrtae on some physiological, biochemical and growth characteristics of wheat (Triticum aestivum L. cv. Chamran) under available-water deficiency, this experiment was conducted in Ramin Agricultural and Natural Resources University, Khuzestan, Iran, in 2012. The experiment was arranged as factorial, based on randomized complete b...

متن کامل

Effect of silicon application on wheat seedlings growth under water-deficit stress induced by polyethylene glycol

Silicon is known to ameliorate the deleterious effects of drought on plant growth. We evaluated growth of wheat (Triticum aestivum L. CV. Chamran) under Water-Deficit Stress Induced by Polyethylene Glycol as affected by Si application. In this article, the effects of Si (as potassium silicate) on some parameters related to growth, chlorophyll concentration relative water content (RWC), electrol...

متن کامل

Functional characterization of a silicon transporter gene implicated in silicon distribution in barley.

Silicon (Si) is a beneficial element for plant growth. In barley (Hordeum vulgare), Si uptake by the roots is mainly mediated by a Si channel, Low Silicon1 (HvLsi1), and an efflux transporter, HvLsi2. However, transporters involved in the distribution of Si in the shoots have not been identified. Here, we report the functional characterization of a homolog of HvLsi1, HvLsi6. HvLsi6 showed perme...

متن کامل

The ameliorative effect of silicon and potassium on drought stressed grape (Vitis vinifera L.) leaves

 The effect of sodium silicate (Si) and potassium (K) were investigated on the major antioxidant enzyme activities in two different grapevine cultivars (Vitis vinifera L., cvs Yezandai and Malinger Ramfi) under drought stress. The traits included superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), peroxidase (POD, EC 1.11.1.7), guaiacol peroxidase (GPX, EC 1.11.1.7), ascorbate...

متن کامل

A Potential Role of Flag Leaf Potassium in Conferring Tolerance to Drought-Induced Leaf Senescence in Barley

Terminal drought stress decreases crop yields by inducing abscisic acid (ABA) and premature leaf senescence. As potassium (K) is known to interfere with ABA homeostasis we addressed the question whether there is genetic variability regarding the role of K nutrition in ABA homeostasis and drought tolerance. To compare their response to drought stress, two barley lines contrasting in drought-indu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017